

Engineering Processes

“Whether you think you can or think you can't - you
are right.”--Henry Ford

 There are a lot of opinions on “good” processes
 Any of them can be backed up with success stories
 Go with the one that fits your project's needs

Source: http://moria.whyayh.com/cgi-bin/viewvc/public.cvs/app/eng-methods/

http://moria.whyayh.com/cgi-bin/viewvc/public.cvs/app/eng-methods/

My Experience

 18 years at HP in 5 R&D Labs – HP 150 PC
 5 startups in the last 12 years – one was Napster
 Current title: Release/Operations Manager at

TrustedID (an Identity Theft Protection company)
 Release job role: manage QA, manage 70 Dev and

QA virtual servers, build packages, push code
changes to production

 Operations job role: manage 25 production servers,
and architect the migration to AWS.

FLURPS

 Functional – works as designed
 Localizable – languages and formatting
 Usable – users want to use it, even with “defects”
 Reliable – you don't lose data
 Performance – good enough to meet Functional req.
 Supportable – problems can be reproduced for any

version.

Product Lifecycles

“When all is said and done, more usually gets said
than done.”--unknown

 Waterfall – elements of this are in all lifecycles
 Agile – these are the preferred lifecycles

Waterfall Lifecycle

 Idea Phase
 Proposal
 Brainstorm
 Prototype

 Design
 Project Plan
 External Design
 Internal Design

 Implement
 Create Modules
 Dev. Integration
 System Integration

 Alpha Test
 Beta Test
 Production

Maintenance
 End of Life

Agile Lifecycles

Source: http://www.extremeprogramming.org

http://www.extremeprogramming.org/index.html

Agile Iterations

Source:
http://en.wikipedia.org/wiki/Extreme_programming

http://en.wikipedia.org/wiki/Extreme_programming

FLURPS Application

 Functional – yes, must meet the competition
requirements

 Localizable – no
 Usable – most club members can run it
 Reliable – enough to handle likely problems
 Performance – only enough to meet requirements
 Supportable – most club members can fix it

Lifecycle Application (1)

 Brainstorm overall approach
 Breakup the project into prototype modules
 Repeat for each module (HW/SW)

 Brainstorm
 Pick the ones to try
 Prototype until success or failure is “known”
 Assemble with other modules?

Lifecycle Application (2)

 Improve on the assembled prototype(s)
 Repeat from the beginning, until the FLURPS

requirements are met (i.e. evaluate the overall
product and project process)

The baby duck syndrome

 Baby ducks imprint on the first moving thing they
see

 Engineers often hang on to their first designs or first
things built

 SW example: unwilling to rename things
 Solution: when enough things become inconsistent

or unworkable, it is time to refactor or redesign

Prototyping

 Plan each prototype like a mini-project
 Make it Functional first
 Make it Robust next – risk analysis mitigations
 Make it “pretty” last (if manufacturing it)
 Use the cheapest and good-enough materials, don't

over build
 Working (even ugly) prototypes should always be

favored over beautiful unproven simulations

(“Show it in code!” – IETF)

What about CAD?

 It is not required in a prototype phase of a project
 It is only required for manufaturing products with

other defined pieces
 It can be a fun simulation tool, but paper drawings

are faster for one-off designs
 If used in the prototype phase, limit it to small parts

of the project, or as a rough picture of the assembled
parts – don't get sucked into unneeded precision

Error Handling

 Design it in at the beginning – Murphy's Law will
bite you, if you don't

 For SW there are structured ways of doing error
handling so that your functional coded is still
readable (see the reference in the footer)

 Planning for what could go wrong, is NOT
“planning for failure”–it is called “risk analysis”--
Mitigate for likely and costly problems

Source: http://moria.whyayh.com/work/error-handling/

 ”A transaction approach to error handling”

http://moria.whyayh.com/work/error-handling/

